Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tris(3-chloropentane-2,4-dionato$\kappa^{2} O, O^{\prime}$)iron(III)

Franc Perdih

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, PO Box 537, SI-1000 Ljubljana, Slovenia, and CO EN-FIST, Dunajska 156, SI1000 Ljubljana, Slovenia
Correspondence e-mail: franc.perdih@fkkt.uni-lj.si
Received 30 April 2012; accepted 21 May 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.044 ; w R$ factor $=0.127$; data-to-parameter ratio $=18.3$.

In the title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{ClO}_{2}\right)_{3}\right]$, the $\mathrm{Fe}^{\mathrm{III}}$ cation is situated on a twofold rotation axis and is coordinated by six O atoms from three 3-chloropentane-2,4-dionate ligands in a slightly distorted octahedral environment. $\mathrm{Fe}-\mathrm{O}$ bond lengths are in the range 1.9818 (18) -1.9957 (18) \AA. The trans $\mathrm{O}-\mathrm{Fe}-\mathrm{O}$ angles are 169.06 (13) and 171.54 (8) ${ }^{\circ}$, whereas the corresponding cis angles are in the range $84.81(10)-$ 100.68 (12) ${ }^{\circ}$. In the crystal, molecules are linked via C $\mathrm{H} \cdots \mathrm{Cl}$ interactions.

Related literature

For applications of metal complexes with β-diketonate ligands, see: Bray et al. (2007); Garibay et al. (2009); Perdih (2011); Schröder et al. (2011). For related structures, see: Iball \& Morgan (1967); Perdih (2012); Pfluger \& Haradem (1983).

Experimental

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{ClO}_{2}\right)_{3}\right]$

$$
b=9.5424(2) \AA
$$

$M_{r}=456.49$
Monoclinic, $C 2 / c$
$a=15.7745$ (4) £

$$
\begin{aligned}
& c=12.9833(3) \AA \\
& \beta=100.610(1)^{\circ} \\
& V=1920.92(8) \AA^{3}
\end{aligned}
$$

$Z=4$
$T=293 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=1.23 \mathrm{~mm}^{-1}$
Data collection
Nonius KappaCCD area-detector diffractometer
Absorption correction: multi-scan (SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.749, T_{\text {max }}=0.857$
$0.25 \times 0.25 \times 0.13 \mathrm{~mm}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044 \quad 118$ parameters
$w R\left(F^{2}\right)=0.127$
$S=1.07$
2155 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.88 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.62 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{Cl1}{ }^{\mathrm{i}}$	0.96	2.78	$3.642(3)$	150

Symmetry code: (i) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

The author thanks the Ministry of Higher Education, Science and Technology of the Republic of Slovenia and the Slovenian Research Agency for financial support through grants P1-0230-0175 and X-2000.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2375).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bray, D. J., Clegg, J. K., Lindoy, L. F. \& Schilter, D. (2007). Adv. Inorg. Chem. 59, 1-37.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Garibay, S. J., Stork, J. R. \& Cohen, S. M. (2009). Prog. Inorg. Chem. 56, 335378.

Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Iball, J. \& Morgan, C. H. (1967). Acta Cryst. 23, 239-244.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Perdih, F. (2011). Acta Cryst. E67, m1697.
Perdih, F. (2012). Acta Cryst. E68, m806.
Pfluger, C. E. \& Haradem, P. S. (1983). Inorg. Chim. Acta, 69, 141-146.
Schröder, K., Join, B., Amali, A. J., Junge, K., Ribas, X., Costas, M. \& Beller, M. (2011). Angew. Chem. Int. Ed. 50, 1425-1429.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, m807 [doi:10.1107/S1600536812023215]

Tris(3-chloropentane-2,4-dionato- $\kappa^{2} O, O^{\prime}$)iron(III)

Franc Perdih

Comment

β-Diketonates have been proven to be versatile ligands for various metal ions. They can be easily derivatized, thus modifying the electronic and steric nature of these ligands to design suitable structure/function relationships (Bray et al., 2007; Garibay et al., 2009; Perdih (2011). Metal-organic frameworks are considered as promising materials for many applications mostly due to interesting porosity properties. Besides the potential applications as gas storage other applications such as molecular sensing, ion exchange, catalysis, optics and magnetism have received considerable attention (Bray et al., 2007; Garibay et al., 2009). Particularly interesting is the metal-ligand coordination with applications in organic synthesis, where iron β-diketonate compounds showed great applicability. Reasons for this are the natural abundance of this metal and also it's biocompatibility, both of which are essential for the development of sustainable chemical catalysis (Schröder et al., 2011).
In the title molecule (Fig. 1), the iron(III) cation is situated on a twofold axis, and is surrounded by six O atoms from three 3-chloropentane-2,4-dionate ligands in a slightly distorted octahedral environment. $\mathrm{Fe}-\mathrm{O}$ bond lengths are in the range of $1.9818(18)-1.9957(18) \AA$, trans $\mathrm{O}-\mathrm{Fe}-\mathrm{O}$ angles are $169.06(13)^{\circ}$ and $171.54(8)^{\circ}$, and cis angles are in the range of $84.81(10)^{\circ}-100.68(12)^{\circ}$. These bond lengths are similar as for example in $\mathrm{Fe}(\mathrm{acac})_{3}$ (Iball \& Morgan, 1967). The title compound is isostructural with the corresponding aluminium(III) compound (Perdih, 2012). The displacement of the metal atom is best described by a bending of a chelate ligand about the "bite" atoms. The angles between the O -$\mathrm{Fe}-\mathrm{O}$ and the ligand chelate mean planes are 0.78° and 12.68°. For comparison these values are $1.40^{\circ}, 10.13^{\circ}$ and 11.98° in $\mathrm{Fe}(\mathrm{hfac})_{3}\left(\mathrm{hfac}=\right.$ hexafluoroacetylacetonate) $\left(\right.$ Pfluger \& Haradem, 1983) and $0.05^{\circ}, 3.24^{\circ}$ and 10.60° in $\mathrm{Fe}(\mathrm{acac})_{3}$ (Ibell \& Morgan, 1967). A 1-D framework is achieved due to weak intermolecular C6-H6A $\cdots \mathrm{Cl} 1(-x+1 / 2,-y$ $+1 / 2,-z+1$) interactions where one 3-chloropentane-2,4-dionate ligand acts as a hydrogen-bond donors and two ligands are hydrogen-bond acceptors (Fig. 2).

Experimental

To a clear solution of $\mathrm{FeCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(2 \mathrm{mmol}, 0.54 \mathrm{~g})$ in water $(15 \mathrm{ml})$ a solution of 3-chloropentane-2,4-dione (6 mmol , $0.81 \mathrm{~g})$ in methanol (5 ml) was added while stirring. Afterwards $1 M \mathrm{NaOH}(6 \mathrm{ml})$ was slowly added and the resulting solution was stirred at $70^{\circ} \mathrm{C}$ for 15 minutes. After cooling to room temperature the deep red product was filtrated, washed with water (20 ml), and subsequently air-dried. Yield: $0.65 \mathrm{~g}, 71 \%$. Crystals suitable for X-ray analysis were obtained by recrystallization from ethanol.

Refinement

All H atoms were initially located in a difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}=0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$. To improve the refinement results, two reflections with too high value of $\delta\left(F^{2}\right) /$ e.s.d. and with $F_{\mathrm{o}}{ }^{2}<F_{\mathrm{c}}{ }^{2}$ were deleted from the refinement.

Computing details

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figure 1

Molecular structure of the title complex showing displacement ellipsoids at the 30% probability level. Symmetry code: i $=-x+1, y,-z+3 / 2$.

Figure 2
1D infinte chain with dashed lines indicating intermolecular $\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A} \cdots \mathrm{Cl} 1$ hydrogen bonding. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Symmetry code: $\mathrm{ii}=-x+1 / 2,-y+1 / 2,-z+1$.

Tris(3-chloropentane-2,4-dionato- $\kappa^{2} O, O^{\prime}$)iron(III)

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{ClO}_{2}\right)_{3}\right]$
$M_{r}=456.49$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$a=15.7745$ (4) \AA
$b=9.5424$ (2) \AA
$c=12.9833(3) \AA$
$\beta=100.610(1)^{\circ}$

$$
\begin{aligned}
& V=1920.92(8) \AA^{3} \\
& Z=4 \\
& F(000)=932 \\
& D_{\mathrm{x}}=1.578 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2278 \text { reflections } \\
& \theta=2.6-27.5^{\circ} \\
& \mu=1.23 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=293 \mathrm{~K}$

$$
0.25 \times 0.25 \times 0.13 \mathrm{~mm}
$$

Prism, red

Data collection

Nonius KappaCCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 0.055 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(SCALEPACK; Otwinowski \& Minor, 1997)

> 4155 measured reflections
> 2155 independent reflections
> 1927 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.012$
> $\theta_{\max }=27.4^{\circ}, \theta_{\min }=3.9^{\circ}$
> $h=-20 \rightarrow 20$
> $k=-12 \rightarrow 12$
> $l=-16 \rightarrow 16$
$T_{\text {min }}=0.749, T_{\text {max }}=0.857$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
Secondary atom site location: difference Fourier map
$w R\left(F^{2}\right)=0.127$
$S=1.07$
2155 reflections
118 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0748 P)^{2}+1.6605 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.88$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.62$ e \AA^{-3}

Special details

Experimental. 192 frames in 5 sets of ω scans. Rotation/frame $=2.0^{\circ}$. Crystal-detector distance $=25.00 \mathrm{~mm}$. Measuring time $=60 \mathrm{~s} /{ }^{\circ}$.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
Fe1	0.5	$0.20825(5)$	0.75	$0.04488(18)$
Cl1	$0.20617(6)$	$0.40123(14)$	$0.58549(12)$	$0.1198(5)$
C12	0.5	$-0.33055(10)$	0.75	$0.0684(3)$
O1	$0.38591(12)$	$0.2280(2)$	$0.79173(16)$	$0.0642(5)$
O2	$0.45438(12)$	$0.3417(2)$	$0.63475(15)$	$0.0593(4)$
O3	$0.46568(12)$	$0.05417(17)$	$0.64737(13)$	$0.0528(4)$
C1	$0.2404(2)$	$0.2638(6)$	$0.7991(4)$	$0.0987(13)$
H1A	0.261	0.2436	0.8718	0.148^{*}
H1B	0.2042	0.1885	0.7677	0.148^{*}
H1C	0.2077	0.3493	0.7928	0.148^{*}
C2	$0.31593(17)$	$0.2797(3)$	$0.7439(3)$	$0.0622(7)$
C3	$0.30871(17)$	$0.3467(3)$	$0.6477(3)$	$0.0680(8)$

C4	$0.37767(19)$	$0.3776(3)$	$0.5971(2)$	$0.0613(7)$
C5	$0.3663(3)$	$0.4565(4)$	$0.4949(3)$	$0.0931(12)$
H5A	0.4217	0.4738	0.477	0.14^{*}
H5B	0.338	0.5441	0.502	0.14^{*}
H5C	0.3318	0.4018	0.4407	0.14^{*}
C6	$0.44210(19)$	$-0.1585(3)$	$0.5553(2)$	$0.0621(6)$
H6A	0.4189	-0.0946	0.5001	0.093^{*}
H6B	0.3986	-0.2251	0.5649	0.093^{*}
H6C	0.4906	-0.207	0.5371	0.093^{*}
C7	$0.47040(14)$	$-0.0786(2)$	$0.65475(17)$	$0.0450(5)$
C8	0.5	$-0.1469(3)$	0.75	$0.0458(6)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	$0.0379(3)$	$0.0458(3)$	$0.0498(3)$	0	$0.00487(18)$	0
C11	$0.0618(5)$	$0.1015(7)$	$0.1759(12)$	$0.0164(5)$	$-0.0313(6)$	$0.0217(8)$
C12	$0.0768(6)$	$0.0450(5)$	$0.0797(6)$	0	$0.0049(5)$	0
O1	$0.0414(9)$	$0.0889(14)$	$0.0627(11)$	$0.0061(9)$	$0.0104(8)$	$0.0053(10)$
O2	$0.0604(10)$	$0.0518(10)$	$0.0645(10)$	$0.0054(8)$	$0.0086(8)$	$0.0092(8)$
O3	$0.0610(10)$	$0.0481(9)$	$0.0457(8)$	$-0.0038(7)$	$0.0005(7)$	$0.0015(7)$
C1	$0.0466(17)$	$0.135(4)$	$0.119(3)$	$0.0057(19)$	$0.0246(18)$	$-0.012(3)$
C2	$0.0405(12)$	$0.0661(16)$	$0.0778(17)$	$0.0025(11)$	$0.0050(11)$	$-0.0189(13)$
C3	$0.0476(13)$	$0.0521(14)$	$0.095(2)$	$0.0087(11)$	$-0.0113(13)$	$-0.0039(14)$
C4	$0.0675(16)$	$0.0383(11)$	$0.0687(15)$	$0.0023(10)$	$-0.0117(12)$	$-0.0008(11)$
C5	$0.115(3)$	$0.0650(19)$	$0.085(2)$	$-0.0019(19)$	$-0.019(2)$	$0.0217(17)$
C6	$0.0720(17)$	$0.0623(15)$	$0.0495(13)$	$-0.0082(13)$	$0.0049(11)$	$-0.0076(11)$
C7	$0.0369(10)$	$0.0515(12)$	$0.0462(11)$	$-0.0034(8)$	$0.0066(8)$	$-0.0030(9)$
C8	$0.0390(14)$	$0.0463(16)$	$0.0520(16)$	0	$0.0079(12)$	0

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Fe} 1-\mathrm{Ol}^{\text {i }}$	1.9818 (18)	C1-H1C	0.96
Fe1-O1	1.9818 (18)	C2-C3	1.388 (5)
Fe1-O3	1.9912 (17)	C3-C4	1.402 (4)
$\mathrm{Fe} 1-\mathrm{O}^{\text {i }}$	1.9912 (17)	C4-C5	1.507 (4)
$\mathrm{Fe} 1-\mathrm{O}^{2}{ }^{\text {i }}$	1.9957 (18)	C5-H5A	0.96
Fe1-O2	1.9957 (18)	C5-H5B	0.96
C11-C3	1.749 (3)	C5-H5C	0.96
C12-C8	1.753 (3)	C6-C7	1.495 (3)
O1-C2	1.263 (3)	C6-H6A	0.96
$\mathrm{O} 2-\mathrm{C} 4$	1.266 (3)	C6-H6B	0.96
O3-C7	1.271 (3)	C6-H6C	0.96
$\mathrm{C} 1-\mathrm{C} 2$	1.507 (5)	C7-C8	1.400 (3)
C1-H1A	0.96	C8-C7 ${ }^{\text {i }}$	1.400 (3)
C1-H1B	0.96		
O1--Fe1-O1	169.06 (13)	C3-C2-C1	122.2 (3)
O 1 - $\mathrm{Fe} 1-\mathrm{O} 3$	92.07 (8)	C2-C3-C4	125.2 (2)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 3$	96.00 (9)	C2-C3-Cl1	117.9 (2)

$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O}^{\text {i }}$	96.00 (9)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O}^{\text {i }}$	92.07 (8)
$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{O}^{\text {i }}$	84.81 (10)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 2^{\mathrm{i}}$	85.63 (8)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O}^{2}$	87.39 (8)
$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{O}^{2}{ }^{\text {i }}$	171.54 (8)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Fe} 1-\mathrm{O} 2^{\text {i }}$	87.33 (8)
$\mathrm{O} 1 \mathrm{i}-\mathrm{Fe} 1-\mathrm{O} 2$	87.39 (8)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 2$	85.63 (8)
$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{O} 2$	87.33 (8)
O 3 - $\mathrm{Fe} 1-\mathrm{O} 2$	171.54 (8)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Fe} 1-\mathrm{O} 2$	100.68 (12)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Fe} 1$	131.2 (2)
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{Fe} 1$	130.47 (19)
$\mathrm{C} 7-\mathrm{O} 3-\mathrm{Fe} 1$	132.86 (15)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	122.8 (3)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	115.0 (3)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Fe} 1-\mathrm{O} 1-\mathrm{C} 2$	64.1 (3)
$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{O} 1-\mathrm{C} 2$	-73.3 (3)
$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{O} 1-\mathrm{C} 2$	-158.3 (3)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Fe} 1-\mathrm{O} 1-\mathrm{C} 2$	114.5 (3)
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{O} 1-\mathrm{C} 2$	13.6 (3)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Fe} 1-\mathrm{O} 2-\mathrm{C} 4$	170.7 (2)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 2-\mathrm{C} 4$	-17.7 (2)
$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{O} 2-\mathrm{C} 4$	78.5 (2)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Fe} 1-\mathrm{O} 2-\mathrm{C} 4$	-104.2 (2)
$\mathrm{O} 1 \mathrm{i}-\mathrm{Fe} 1-\mathrm{O} 3-\mathrm{C} 7$	93.7 (2)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 3-\mathrm{C} 7$	-93.7 (2)
O3--Fe1-O3-C7	-2.14 (17)
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{O} 3-\mathrm{C} 7$	-179.0 (2)
Fe1-O1-C2-C3	-5.3 (4)
Fe1-O1-C2-C1	174.9 (2)
O1-C2-C3-C4	-6.4 (5)

$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Cl} 1$	$116.9(2)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	$122.1(3)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	$115.2(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$122.7(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.5
$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5
$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5
$\mathrm{H} 5 \mathrm{~B}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	109.5
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.5
$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.5
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.5
$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.5
$\mathrm{H} 6 \mathrm{~B}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.5
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$	$122.4(2)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 6$	$116.0(2)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$121.6(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 7$	$124.5(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{Cl} 2$	$117.75(16)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{Cl} 2$	$117.75(16)$

173.3 (3)
175.1 (2)
-5.2 (4)
13.5 (4)
$-167.0(2)$
2.2 (5)
-179.3 (2)
-177.2 (3)
1.3 (4)
4.1 (3)
-176.07 (17)
-2.01 (16)
178.2 (2)
177.99 (16)
-1.8(2)

Symmetry code: (i) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry ($\AA,{ }^{o}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.96	2.78	$3.642(3)$	150

Symmetry code: (ii) $-x+1 / 2,-y+1 / 2,-z+1$.

